NILM

Fraunhofer IMS – Kompetenter Forschungs- und Entwicklungspartner für die Bereiche Nonintrusive Load Monitoring, Predictive Maintenance und Machine Learning.

Nonintrusive Load Monitoring (NILM)

Einsatz von Smart Metern und maschinellen Lernverfahren zur vollautomatischen gerätespezifischen Stromverbrauchsanalyse.

Disaggregation von Verbrauchern mit NILM

Disaggregation von Verbrauchern mit NILM

Energiemanagement und Einsparbemühungen wurden in der Vergangenheit dadurch erschwert, dass aus einem gemessenen Gesamtverbrauch die Ursache für einen Mehrverbrauch nicht direkt abgeleitet werden konnte. Gerätespezifische Energiesparmaßnahmen und Unregelmäßigkeiten im Betriebsablauf aus dem Gesamtverbrauch zu identifizieren: Das ist die Kern-Idee des Nonintrusive Load Monitoring, kurz NILM. Unter Leitung des Fraunhofer IMS entwickelten die Partner ein Energiemanagement-System, das die Analyse des gerätespezifischen Stromverbrauchs mit nur einem Messpunkt ermöglicht – eine kostengünstige Alternative zum Submetering. Mit komplexen Algorithmen und Verfahren des Machine Learning werden die Verbrauchsmuster der Geräte aus dem Gesamtstromverbrauch aufgeschlüsselt.

Der Fingerabdruck im Stromnetz

Jedes Gerät beeinflusst Strom und Spannung auf seine eigene charakteristische Art. Durch diesen Fingerabdruck im Stromnetz, der beim Nonintrusive Load Monitoring erkannt wird, ist es möglich, den Gesamtstromverbrauch auf einzelne Geräte aufzuschlüsseln.

Condition Monitoring: Anomalien erkennen

Die Situation kennt fast jeder: Man verlässt als Letzter das Gebäude und glaubt, alles ausgeschaltet zu haben. Doch hat man auch wirklich an alles gedacht? Mit gerätespezifischen Verbrauchsanalysen durch Nonintrusive Load Monitoring werden Abweichungen von typischen Verbrauchsmustern für jedes Gerät einzeln identifiziert – ohne aufwändige Ursachensuche. In Kombination mit ereignis- und zeitbasierten Alarmen wird unmittelbar nach Auftreten der Abweichung eine Benachrichtigung versendet, sodass rechtzeitig Maßnahmen zur Abhilfe eingeleitet werden können.

Predictive Maintenance: Notwendige Wartung frühzeitig erkennen

Ob die unternehmenseigenen Anlagen oder Geräte innerhalb normaler Parameter laufen oder ein Ausfall droht, ist im Kontext von Industrie 4.0 von enormer betriebswirtschaftlicher Bedeutung. Ein Fehlverhalten zeigt sich zuerst im gerätespezifischen Verbrauchsmuster, später auch in Veränderungen des Gesamtverbrauchs. Ändert sich bspw. das Spektrum der Störausendungen eines Kompressors im Normalbetrieb, kann ein drohender Produktionsausfall durch rechtzeitiges Ergreifen von Gegenmaßnahmen verhindert werden. Die alarmierten Mitarbeiter können frühzeitig die Ursache für das Fehlverhalten untersuchen: Liegt ein Bedienungsfehler vor? Gibt es Fehleinstellungen? Ist der Kompressor defekt? Zusätzlich wird das Auftreten kostenintensiver Lastspitzen durch rechtzeitiges Eingreifen verhindert.

Kostenkalkulation verbessern, Einsparpotenziale identifizieren

Einzelne Geräte können aufgrund ihrer Verwendung oder ihres Aufstellortes bestimmten Prozessen bzw. Anwendungen zugeordnet werden. Bspw. können in einem Industriebetrieb zum Prozess der Veredelung ein Kompressor und zwei Motoren gehören, zum Prozess der Fertigung dagegen fünf Kompressoren und ein Antrieb. In der Gastronomie können der Kaffeeautomat und die Kasse dem Verkaufsbereich zugeordnet

sein und der Geschirrspüler der Küche. Mit der gerätespezifischen Verbrauchsanalyse können Geräte klassifiziert und Prozessen bzw. Anwendungsbereichen zugewiesen werden. Damit können Kosten verursachungsgerecht umgelegt, verglichen und Prozesse bzw. Anwendungen ganzheitlich analysiert werden. Effizienzmaßnahmen zielen dann nicht mehr auf den bloßen Austausch einzelner, ineffizienter Geräte ab, sondern auf die energetische Optimierung eines gesamten Prozesses bzw. Anwendungsbereichs mit dem zugehörigen Gerätepark.

Bisherige Ergebnisse von NILM

Im Rahmen des Forschungsprojektes NILM wurden zunächst kommunale Unternehmen und Industrieunternehmen sowie Filialisten zur Untersuchung akquiriert, da diese aufgrund ihrer Vielzahl an Pumpen, elektrischen Antrieben, Heiz- und Klimageräten ein erhebliches Einsparpotenzial bieten. Mit bei den Unternehmen installierter Messtechnik wurden mehrere tausend Messungen pro Sekunde durchgeführt und die Messdaten analysiert und so der Stromverbrauch der Geräte und Anlagen bestimmt. Diese Messdaten bildeten die Grundlage für die Entwicklung des äußerst komplexen NILM-Algorithmus.

Neben den komplexen Algorithmen wurde ein besonders leistungsstarker Smart Meter als Prototyp entwickelt. Dieser misst hochfrequent etwa 8.000 Messwerte (Strom und Spannung) pro Sekunde. Dank dieser hohen Auflösung ist der Prototyp in der Lage, selbst kleinste Veränderungen im Gesamtstromverbrauch zu erkennen und diese einzelnen Geräten zuzuweisen. Bereits 2016 wurde eine erste Version der NILM-Algorithmen erprobt. Diese wurden anhand hochaufgelöster Daten aus den Testmessungen mithilfe maschineller Lernverfahren zur Mustererkennung kontinuierlich weiterentwickelt. Neben der Auswirkung der Wirkleistung wurde der Einfluss von Blindleistung, Scheinleistung und harmonischen Oberschwingungen auf die Erkennungsqualität zur Optimierung der Algorithmen untersucht. Durch den stetigen Vergleich der Ergebnisse der Algorithmen mit realen Untermessungen (sog. Ground Truth) wurde die höchstmögliche Erkennungsgüte sichergestellt. Innerhalb der Energiemanagement-Software lassen sich die Erkennungsergebnisse der Algorithmen tiefergehend analysieren. Die modulare Softwarelösung passt sich dabei individuell an die Bedürfnisse ihrer Nutzer - aus Industrie, Handel und Gewerbe - an. Umfangreiche Analysetools unterstützen diese bei der Identifikation, Bewertung und beim Monitoring gerätespezifischer Effizienzmaßnahmen.  Mit den Last- und Spektralanalysen lassen sich schnell und einfach Lastspitzen auf Einzelgeräteebene aufdecken und Optimierungspotenziale ableiten, um die Lastkurve nachhaltig zu glätten und durch einen gleichmäßigen Bezug vom Energieversorger Kosten zu sparen. Mithilfe von Alarmen können Anlagen, Antriebe, Geräte, etc. überwacht werden. Durch Benachrichtigungen in Echtzeit können Mehrkosten durch fehlerhafte Einstellungen oder Fehlfunktionen vermieden werden. Dadurch können Aufträge noch genauer kalkuliert werden und Energiesparpotenziale durch die Umlegung der Energiekosten auf einzelne Maschinen, Bereiche oder Prozesse aufgedeckt werden.

Partner

Fraunhofer IMS (Konsortialführung

Innogy SE

EasyMeter GmbH

GreenPocket GmbH

Discovergy GmbH

Das könnte Sie auch interessieren

EQUIVert - Medizinisches Gerät zur Schwindeltherapie

Intelligente Sensorik bietet eine neue Form der Schwindeltherapie für Arzt und Patient

Smart Service Power

Durch intelligente Digitalisierung soll das altersgerechte technikgestützte Wohnen im Quartier ermöglicht werden.

Übersichtsseiten

Electronic Assistance Systems (Home)

Wir forschen und entwickeln an Innovationen im Bereich elektronischer Assistenzsysteme.

Technologien

Für die Entwicklung von elektronischen Assistenzsystemen kommen unterschiedliche Technologien zum Einsatz, die am IMS hausintern zur Verfügung stehen.

Leistungen

Erfahren Sie mehr über unser breites Spektrum an Leistungen im Bereich elektronischer Assistenzsysteme.

Download