# Atomic layer deposition (ALD)

We carry out ALD processes on wafer, batch and chip level with four different ALD tools.

### ALD mini (PICOSUN® R-200 std.)

- R&D of new materials
- Can be loaded manually with 200 mm wafers as well as any wafer and chip size below Ø 200 mm

#### ALD cluster (PICOSUN® R-200 adv.)

- Allows automatic handling and successive processing of 25 wafers of 200 mm
- Two chambers are designed respectively for thermal ALD and plasma-enhanced ALD

### ALD batch (PICOSUN® P-300B)

 25 wafers of 200 mm can be processed simultaneously with homogeneous quality, aiming for a high throughput

#### F.A.S.T.-ALD (Plasma-Therm F.A.S.T.®)

- Four-chamber system specialized for TSV and μVia production necessary for wafer stacking
- The automatic handling of 200 mm wafers is configured to process a whole 25 wafer batch successively



ALD support for every step from precursor- and process development to pilot production.

### Contact

Technology Services sales@ims.fraunhofer.de

Fraunhofer Institute for Microelectronic Circuits and Systems IMS Finkenstraße 61 47057 Duisburg www.ims.fraunhofer.de/en.html

#### Copyright

Fraunhofer IMS
IM Imagery/Adobe Stock
Macrovector/Adobe Stock



## **Technology Services**

Fabrication of demonstrators and prototypes up to preproduction and pilot production.

- Automated, cassette-to-cassette equipment set up for 200 mm wafers (8")
- Area ISO4 cleanroom: >1000 m² ISO 9001 certified management system since 1995
- Digital production using modern Manufacturing Execution System (MES) by CM
- Comprehensive system for process monitoring
- Integration of wafers from external foundries
- Capacity: 4500 wafers per year
- Member of the Research Fab Microelectronics Germany (FMD)

## Fraunhofer IMS

## Working on a safe, secure and sustainable future with the help of Smart Sensor Systems:

Our institute consists of numerous research labs, in which we provide ASIC and chip design, CMOS, MEMS, LiDAR development services and many more microelectronic solutions. A seamless path from initial idea to development and production, while maintaining the highest quality and reliability standards, is our offer.

We look forward to giving a long-term support to our customers and be a reliable research and development partner. Fraunhofer IMS provides numerous technologies in four business units: Health, Industry, Mobility, as well as Space and Security.



# Customizable photonics platform

We offer services to support your idea at all stages from first draft to pilot fabrication.

Our services include:

- Device design and simulation
- Process development
- Chip fabrication to pilot fabrication
- Device characterization
- Process transfer

Our technology platform is accessible via R&D collaborations and contracting. We are also open to collaborative projects with public funding.

# Post-CMOS photonic platform

Our Post-CMOS compatible SiN-photonics platform offers low-loss components with a broad choice of device geometries and user-defined customization options.

Fraunhofer IMS platform offers silicon-nitride photonics and options for integration of new materials. Our platform uses back-end-of-line processes to enable photonics as a post-processing option on foundry wafers containing CMOS circuitry.

Based on our extensive combined experience in integrated circuits, Post-CMOS sensors and photonics, we guide you from first idea to prototype and ramp-up.

Photonics and electronics made on one manufacturing platform.



## Process chain technologies

| Process step | Application examples                                                                                                                                                                          | Specification                                                                                                                                                                                                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deposition   | <ul> <li>Functional / sensitive layers</li> <li>Isolating / conductive layers</li> <li>Layer stack for biomedica encapsulation via ALD</li> <li>Temperature sensitive applications</li> </ul> | <ul> <li>CVD: SiO, SiN, Si (B, P, Ge), Ge, aSi, B, W</li> <li>PVD: Ti/TiN, TiW, Cu, AlSi, AlCu</li> <li>ICP: aSi, SiO, SiN, DLC</li> <li>ALD: Al<sub>2</sub>O<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>, ZnO, AZO, TiAlCN, TiN, Ru, MoS<sub>2</sub>, WS<sub>2</sub>, SiO<sub>2</sub>, Cu</li> <li>Thermal: SiO<sub>2</sub></li> </ul> |
| Lithography  | <ul> <li>Converting all necessary layers into an adequate layout</li> <li>Transferring alignment marks and test structures</li> </ul>                                                         | <ul> <li>0,35 µm resolution</li> <li>8" Wafer Stepper</li> <li>8" Mask Aligner</li> <li>Backside-Alignment possible</li> <li>Stitching</li> </ul>                                                                                                                                                                                    |
| Etching      | Sacrificial layer<br>technology                                                                                                                                                               | <ul> <li>Wet chemical</li> <li>DRIE</li> <li>Ion Beam Milling / Etching</li> <li>Isotropic release etch (XeF2, HF)</li> <li>Plasma enhanced etching</li> </ul>                                                                                                                                                                       |

| Process step   | Application examples                                                                                                                                                                                            | Specification                                                                                                                                                                                                                                     |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3D integration | <ul> <li>CMOS single photon</li> <li>Avalanche diodes         (CSPAD) detector for light imaging, detection, and ranging (LiDAR)     </li> <li>Electrical wafer-towafer connection through microvias</li> </ul> | <ul> <li>Wafer thinning</li> <li>Wafer-to-wafer-bonding</li> <li>Chip-to-chip-bonding</li> <li>Chip to wafer bonding</li> <li>Through Silicon Vias (TSVs)</li> <li>8" Wafer</li> </ul>                                                            |
| Metrology      | <ul> <li>Scanning acoustic<br/>microscopy to detect<br/>voids at the interface<br/>between two<br/>bonded wafer</li> </ul>                                                                                      | <ul> <li>Void inspection</li> <li>Electrical wafer testing</li> <li>Surface profiling</li> <li>Sheet resistance</li> <li>Layer thickness, CD, and<br/>Overlay measurements</li> <li>Chip to wafer</li> <li>Through Silicon Vias (TSVs)</li> </ul> |